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Abstract
Recent experiments have shown that a gate voltage applied perpendicular to
the axis of a carbon nanotube can give rise to a spin–orbit interaction (SOI).
This is of the same nature as the Rashba–Bychkov SOI at a semiconductor
heterojunction and is due to the asymmetry in the confining potential of an
electron on the surface of the nanotube. Using a continuum model, we obtain
analytical expressions for the spin-split energy bands for electrons on the surface
of nanotubes in the presence of SOI. Each energy level could then be used to
accommodate electrons which could then be excited to yield intra-SO and inter-
SO subband plasmons. Using numerical calculations, we present results for the
plasmon dispersion relation. The anticrossing of these plasmon excitations and
their group velocities are discussed.

1. Introduction

The effect of the Rashba–Bychkov [1] and Dresselhaus [2] spin–orbit interaction (SOI) on
collective plasma excitations in narrow-gap heterostructures such as In1−xGax As/In1−x AlxAs is
currently being actively investigated by several groups [3–8]. For a heterostructure, the crystal
symmetry is broken at the interface where two-dimensional (2D) electrons or holes are confined
in a quantum well. The resulting effect is a SO-induced splitting of the conduction/valence
band into two subbands. What makes these narrow-gap semiconductors appealing as potential
devices is that the SOI causes the spin to precess [9]. In [9], Datta and Das described how
one may use a gate to manipulate the SOI. Recent related experiments as well as theoretical
calculations on chiral nanotubes have shown that spin splitting in the absence of a magnetic
field is yielded by a gate voltage applied perpendicular to the axis of the nanotube and can
consequently lead to SOI [10–17]. We do not consider the intrinsic atomic SO coupling
discussed by Ando [18]. The Ando SO coupling, which is independent of applied gate
voltage [17], vanishes for large nanotube radii which is not the case for the Rashba coupling
that we discuss in this paper.
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If we are to examine how the plasma excitations are affected by the SOI on a single-
wall nanotube or an array of nanotubes, we must first determine the single-particle eigenstates.
Using a simple continuum model, we obtain analytical expressions for the energy bands of
electrons on the surface of nanotubes with SOI. The simplified calculation we used was
able to show that the SOI splits each energy level into two subbands which could then be
used to accommodate the two types of spin, as is well known in two dimensions (see, for
example, [19, 20]). The density of states (DOS) of the spin-split energy subbands shows that
not only does the energy separation between the spin levels within a subband increase with the
Rashba parameter but also as the radius of the nanotube is decreased. The DOS we obtain is in
qualitative agreement with that obtained for a tight-binding model [21]. We employ our results
for the single-particle eigenstates to determine the dispersion relation for the collective plasma
excitations on nanotubes in the presence of SOI. We treat the system as a Landau Fermi liquid
rather than as a Luttinger liquid. This is acceptable when the system is not strongly correlated,
as it would be in the one-dimensional limit of small nanotube radius. We neglect disorder
effects by assuming that we are dealing with high-quality nanotubes. For single-wall carbon
nanotubes, the mean-free paths typically exceed 1 μm. This paper is of interest because the
plasma excitation frequencies arising from intra-SO subband and inter-SO subband transitions
could be in the terahertz regime. Many new devices operate in this frequency range. These
include sensors and detectors for security and quantum lasers [22, 23].

In section 2 we present our model for a nanotube with the Rashba SOI present. We
will treat this SOI as a coupling parameter and not explicitly include the effect of electron–
electron interaction [24–26]. This model allows us to explicitly obtain analytical results
for the energy bands in a tractable form. We employ these results for the energy bands to
obtain the frequency- and wavevector-dependent dielectric function within the framework of
the random-phase approximation (RPA) of Bohm and Pines, where each momentum transfer
between electrons is treated independently. This enables us to calculate the principal effects
of excitations within a SO subband and between SO subbands on the collective plasmon
modes. The response function contains a form factor which is determined by the overlap
of the wavefunctions for the eigenstates involved in the transition between subbands. The
subbands are labelled by the angular momentum transfer quantum number L = 0,±1,±2, . . .

arising from the cylindrical symmetry of the wavefunctions. Each of these is split by the SOI.
In our numerical calculations presented in section 3 we chose L = 0 and found that there
is an acoustic-like intra-SO (�0) subband plasmon mode as well as two optic-like inter-SO
(�− and �+) subband plasmons. The frequencies of these modes are plotted as functions of
the momentum transfer qz parallel to the axis of the nanotube. In the long-wavelength limit,
qz → 0, the group velocity of the �+ branch is negative whereas that for the �− mode is small
and positive. We conclude with some remarks in section 4.

2. The model for the spin–orbit interaction

We consider a cylindrical nanotube, with its axis on the z-axis, in the presence of a SOI. The
model we employ here is for a nanotube in the presence of an applied external electric field E
produced by a gate. This external electric field leads to an additional SOI which is different
from the Ando [18] term (as discussed in the paper by De Martino and Egger [17]). The Ando
SOI is independent of the gate. The form of this gate-controlled Rashba SOI in nanotubes was
derived by De Martino and Egger [17]. It is a relativistic correction to the Hamiltonian which
is similar to that discussed in two dimensions. Our model for the Rashba-like SOI has radial
symmetry. In this case, the Hamiltonian for an electron with effective mass m∗ and momentum
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p on the surface of the nanotube is H = p2

2m∗ + ĤSO, where the SOI is given by

ĤSO = −h̄

(2m∗c)2
E · (σ × p) = iαR

(
(σ1 sin φ − σ2 cos φ)

∂

∂z
+ σ3

R

∂

∂φ

)
. (1)

Here, σ = (σ1, σ2, σ3) are Pauli matrices and αR is the Rashba parameter for the radial
confinement which is included through an electric field. We do not explicitly consider the
effect of exchange interaction on αR as was discussed by Chen and Raikh [24] in a two-
dimensional electron system (2DES). We simply treat αR as a parameter. Saraga and Loss [25]
have also investigated the effect of screening of the Coulomb interaction for a 2DES when the
SOI is included in their calculations. Hausler [26] demonstrated the role played by Coulomb
interactions on the Rashba precession of spins within one-dimensional quantum channels. As
the carrier density is decreased, it was found that the spin precession is enhanced when the
interaction strength is increased. When a gate voltage is applied, the electric field responsible
for the spin splitting will point in one direction perpendicular to the axis of the nanotube. Below,
we have derived the recursive relation for the expansion coefficients for the eigenfunctions. We
have also obtained the recursion relations when the electric field points in one direction only.
In this case, we obtain a three-term recursive relation which can only be solved approximately
when the radius of the nanotube is not too small. We have verified that the resulting energy
dispersion is qualitatively similar to the radially symmetric model which we employ in this
paper. Since we have only approximate results at this time which need some explanation, we
present the axially symmetric model. However, both models yield qualitatively similar results
for the energy dispersion for large radii. As in [1], we include the SOI through a radially
applied external E. Furthermore, we use a quadratic model [27] rather than a linear model for
the energy dispersion of a semi-metallic carbon nanotube without SOI [28] since we do not
expect our conclusions to be affected. We note that the Rashba SOI is due to the asymmetry
in the confining potential of an electron or hole gas at the interface of a heterostructure. This
leads to a SOI which varies linearly with wavevector in two dimensions. The Rashba-like SOI
for nanotubes is due to the asymmetry present when a gate voltage is applied. However, as we
show below, the corrections to the subband energies due to SOI are not linear in the wavevector
kz .

We now write the Schrödinger equation for the total Hamiltonian and use the following to
describe the spinors

H |uν(φ, z)〉 = Eν |uν(φ, z)〉, |uν(φ, z)〉 =
(

u(+)
ν (φ, z)

u(−)
ν (φ, z)

)
. (2)

The above equation for the eigenvalues and eigenspinors is solved with periodic boundary
conditions. Since the Hamiltonian is translationally invariant along the z-axis, we seek
solutions of the form u(±)(φ, z) = �(±)(φ)eikz z/

√
Lz , where Lz is a normalization length.

This leads to a set of coupled ordinary differential equations, i.e.

− h̄2

2m∗ R2

d2�(±)(φ)

dφ2
+ h̄2k2

z

2m∗ �(±)(φ) − E�(±)(φ)

= kzαR(sin φ ± i cos φ)�(∓)(φ) ± iαR

R

d�(±)(φ)

dφ
, (3)

where we have arranged the equations in such a way that the terms which couple them together
are on the right-hand side. This arrangement separates the terms which depend on the SOI
from those that do not. Indeed, if we set αR = 0 it is obvious that the eigenfunctions are ∝eilφ

with l = 0,±1,±2, . . .. Furthermore, since the trigonometric functions sin φ and cos φ arise
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from the αR coupling, this suggests that the role played by the SOI is to mix the subbands.
Consequently, we express the solutions of these coupled equations as

�(±)(φ) =
∞∑

l=−∞
c(±)

l (kz)
eilφ

√
2π

, with
∑

l

∣∣∣c(+)

l

∣∣∣2 +
∣∣∣c(−)

l

∣∣∣2 = 1. (4)

Substituting the expansion for � into equation (3) we obtain the following relationship for the
coefficients c(±)

l (kz)

c(±)
l (kz) = ±iαRkz

E (0)(kz, l) ∓ αRl
R − E

c(∓)

l±1 (kz) , (5)

where

E (0)(kz, l) = h̄2k2
z

2m∗ + h̄2l2

2m∗ R2
. (6)

We then obtain the eigenvalue equation for each subband labelled by l = 0,±1,±2, . . . to be
[(E (1)

l − E)(E (2)
l+1 − E)] − α2

Rk2
z = 0, yielding the energy eigenvalues

E (±)(kz, l) = 1
2

[
E (2)

l+1(kz) + E (1)

l (kz)
]

± 1
2

√[
E (2)

l+1(kz) − E (1)

l (kz)
]2 + 4α2

Rk2
z

≡ h̄2k2
z

2m∗ + h̄2

2m∗ R2

(
l2 + l + 1

2

)
+ αR

2R
±

√(
l + 1

2

)2( h̄2

2m∗ R2
+ αR

R

)2

+ α2
Rk2

z ,

(7)

where the second equation is obtained by making use of the defined quantities

E (1)
l (kz) = E (0)(kz, l) − αRl

R
, E (2)

l (kz) = E (0)(kz, l) + αRl

R
,

E (±)(kz, l) = E (±)(kz,−(l + 1)).
(8)

The eigenspinors for the corresponding energies E (±)(kz, L) are(
�(+)(φ)

�(−)(φ)

)(±)

kz ,L

= 1√
2π

c(±)
L (kz)

(
1

eiφ[E (1)

L (kz) − E (±)(kz, L)]/ikzαR

)
eiLφ. (9)

The normalization conditions give c(+)

L (kz) = kzαR[(E (1)

L − E (+)(kz, L))2 + k2
z α

2
R]−1/2, which

we may employ to obtain c(−)
L (kz) from equation (5). Thus, we have closed-form results for

the eigenstates which could be used in our calculations below. Furthermore, when αR = 0,
equation (7) reduces to E (+)(kz, l) = E (0)(kz, l + 1) and E (−)(kz, l) = E (0)(kz, l) which
are degenerate since l = 0,±1,±2, . . .. Therefore, the corrections to the eigenvalues in
equation (7) due to the SOI are not linear in the wavevector kz .

The single-particle DOS is ν(E) = ν+(E) + ν−(E), where

ν±(E) = 1

π

√
h̄2

2m∗
∞∑

l=−∞

∑
λ=±1

�(K±(l, E))√
K±(l, E)

{
h̄2

m∗ + 2λα2
R

[
B(l) + 8α2

R

m∗

h̄2 K±(l, E)

]−1/2
}−1

,

(10)

�(x) is the Heaviside unit step function and

K±(l, E) = A(l, E) + m∗α2
R

h̄2
±

√
1

4
B(l) +

(
m∗α2

R

h̄2

)2

+ 2A(l, E)
m∗α2

R

h̄2
. (11)

In this notation, A(l, E) = E − αR
2R − h̄2

4m∗ R2 (2l2 + 2l + 1) B(l) = ( αR
R + h̄2

2m∗ R2 )
2(2l + 1)2. We

plot the DOS in figure 1 for a chosen nanotube radius. The separation between the spin-split
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Figure 1. The total density of states ν(E) = ν+(E) + ν−(E) as a function of energy E of a single-
wall nanotube of radius R = 11.0 Å. Here, αR = 0.001 meV Å, m∗ = 0.25me, where me is the
free-electron mass.

levels is decreased as the radius is increased. A calculation in the tight-binding approximation
has also been presented by Kim et al [29] and Hertel et al [21]. Their result was convoluted
with an energy-dependent lifetime obtained from the fast decay of photoexcited carriers.

It can be shown that in the RPA for an electron liquid on the surface of a nanotube of
radius R the plasma dispersion relation can be obtained as solutions of εL (q, ω) = 0, where
εL (qz, ω) = 1+ (2e2/εs)IL (qz R)KL (qz R)χL (qz, ω). In this notation, χL(q, ω) is the density–
density response function resulting from electron transitions between subbands whose angular
momentum quantum numbers l and l ′ differ by L = l − l ′. The nanotube is embedded in
a material with background dielectric constant εb and εs = 4πε0εb. Also, IL(x) and KL(x)

are modified Bessel functions of the first and second kind, respectively. These functions arise
when the Fourier transform of the Coulomb interaction on the nanotube is taken. We have
closed-form analytic expressions for the eigenvectors |u(±)

kz ,l
(z, φ)〉 which can be employed to

obtain

χL(qz, ω) =
∞∑

l,l′=−∞

∑
λ,λ′=±1

∫ ∞

−∞
dkz

2π

f0(E (λ)(kz, l)) − f0(E (λ′)(kz − qz, l ′))
h̄ω + E (λ′)(kz − qz, l ′) − E (λ)(kz, l)

× Mλλ′(kz, l; kz − qz, l ′) =
∞∑

l,l′=−∞

∑
λ,λ′=±1

∫ ∞

−∞
dkz

2π
f0(E (λ)(kz, l))

×
{

Mλλ′ (kz, l; kz − qz, l ′)
h̄ω + E (λ′)(kz − qz, l ′) − E (λ)(kz, l)

− Mλ′λ(kz + qz, l; kz, l ′)
h̄ω + E (λ)(kz, l) − E (λ′)(kz + qz, l ′)

}
, (12)

where the alternative expression in equation (12) was used in doing our numerical calculations.
It also shows that if the energy E (λ)(kz, l) is below the Fermi energy, a single-particle transition
to a subband with energy E (λ′)(kz ± qz, l ′) above the Fermi energy is restricted by the overlap
of their wavefunctions through the form factor Mλλ′(kz, l; k ′

z, l ′) in the numerator. As a matter
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of fact, the form factor is defined by

Mλλ′(kz, l; k ′
z, l ′) =

∣∣∣∣∣
∫ 2π

0
dφ eiLφ

(
�(+)(φ) �(−)(φ)

)(λ)∗
kz ,l

(
�(+)(φ)

�(−)(φ)

)(λ′)

k′
z ,l

′

∣∣∣∣∣
2

= δl′,l−L

[
kzk ′

zα
2
R + (

E (1)
l (kz) − E (λ)(kz, l)

)(
E (1)

l′ (k ′
z) − E (λ′)(k ′

z, l ′)
)]2

[
k2

z α
2
R + (

E (1)
l (kz) − E (λ)(kz, l)

)2][
k ′ 2

z α2
R + (

E (1)
l′ (k ′

z) − E (λ′)(k ′
z, l ′)

)2] .

(13)

Let us assume that L = 0, i.e. l ′ = l. When qz → 0, with k ′
z = kz − qz , we have

M++(kz, l; kz − q, l) ≈ 1 − qz
dM++(kz, l; kz − q, l)

dqz

∣∣∣∣
qz=0

,

M+−(kz, l; kz − q, l) ≈ −qz
dM+−(kz, l; kz − q, l)

dqz

∣∣∣∣
qz=0

, (14)

with similar approximate results for M−−(kz, l; kz − q, l) and M−+(kz, l; kz − q, l). These
results follow from the orthonormality properties of the eigenfunctions when we set qz = 0
and L = 0 in equation (13) and by explicitly using the eigenenergies from equation (7).
The fact that M+− and M−+ vanish as qz → 0 does not mean that there are no inter-
SO subband plasma excitations in the long-wavelength limit. The reason is due to the
Coulomb interaction which multiplies χL=0(qz, ω) in the dielectric function εL=0(qz, ω) =
1 + (2e2/εs)I0(qz R)K0(qz R)χL=0(qz, ω) and I0(qz R) ≈ 1 and K0(qz R) ≈ − ln(qz R/2) if
qz R � 1. When qz increases, so that kz and k ′

z = kz − qz differ, there is some overlap of
the eigenfunctions. This means that the transitions within the same spin subband do not have
the same weight as inter-SO subband transitions for the plasma excitations when qz = 0.

As qz increases, the complete sets of functions
( �(+)(φ)

�(−)(φ)

)(±)

kz ,L
turn out not to be mutually

orthogonal. Instead, we have M++(kz, l; k ′
z = kz − qz, l ′ = l) decreasing from unity such

that M++(kz, l; k ′
z = kz − qz, l ′ = l) + M+−(kz, l; k ′

z = kz − qz, l ′ = l) = 1 is satisfied.
Consequently, there are transitions within the same spin subband as well as between different
spin subbands contributing to the response as the wavevector qz is increased. Additional
discussion of form factors and the plasma excitations they determine will be provided below
when we present our numerical calculations. The limiting cases of R → ∞ and αR → 0
readily follow from the above expressions [27, 30].

3. Numerical results for plasma excitations

In figure 2, we plot, at T = 0 K, the L = 0 plasma dispersion relation as a function of the
reduced wavevector qz/kF for a nanotube. Here, kF = √

2m∗EF/h̄, where EF is the Fermi
energy. The curves were obtained by numerically calculating χL=0(qz, ω) in equation (12)
for fixed qz . By varying the value of ω, we were able to identify the zeros of the dielectric
function εL=0(qz, ω) which correspond to the frequency of plasma excitations. We chose
αR = 10−4 meV Å and, following [27], we set the electron effective mass as m∗ = 0.25 me,
where me is the free-electron mass, EF = 0.6 eV, the background dielectric constant εb = 2.4
and the radius of the nanotube is 11.0 Å. The plot shows three types of plasma excitation.
There are low-lying intra-SO subband single-particle excitations (SPE), one acoustic-like intra-
SO subband plasmon branch (�0) and two inter-SO subband plasmon excitation branches (�−
and �+). Landau damping occurs within the region where there are single-particle excitations
which occurs when the plasmon branches merge with this region. The Rashba SOI gives rise to
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Figure 2. The plasma dispersion of the excitation energy as a function of the wavenumber qz/kF

(in units of kF =
√

2m∗EF/h̄2) along the axis of the nanotube. We chose the Fermi energy
EF = 0.6 eV, the electron effective mass m∗ = 0.25 me where me is the free-electron mass and the
background dielectric constant εb = 2.4. Here, αR = 10−4 meV Å. The branch labelled by �0 is
the intra-SO plasmon. The inter-SO plasmon branches are denoted by �− and �+.

the two inter-SO (�±) modes. The intra-SO plasmon branch starts from the origin, increases
as ω ∝ qz ln(qz R/2) and anticrosses with the �− mode branch before it merges with the SPE
spectrum at larger momentum transfer qz where it decays into particle–hole modes. The single-
particle excitation energies are shown along with those for the plasmon excitations. There is
an acoustic-like plasmon branch for intra-SO subband excitations, as was obtained by Lin and
Shung [27] and Gumbs and Balassis [31] for a single tubule in the absence of SO coupling.
Also, figure 2 shows that there are two optic-like plasmon modes which arise from transitions
between subbands. As the wavevector increases, the less energetic optic-like mode merges with
the acoustic-like plasmon branch. Both of these plasmon modes are Landau damped for larger
wavevectors. The optic-like mode of higher frequency (�+) in figure 2 initially decreases
with increasing wavevector in the long-wavelength limit. This negative (or abnormal) group
velocity arises from the energy dispersion of the subbands in the presence of SOI which lifts the
degeneracy of the electron states [32]. The two higher-frequency optic-like inter-SO plasmon
branches anticross with each other at finite qz . The �+ plasmon wave which is of higher energy
than the �− branch negative group velocity in the long-wavelength limit. On the contrary, the
�− inter-SO subband mode has a small but positive group velocity in the long-wavelength
limit, but this group velocity is increased as the transfer momentum wavevector gets larger.
Consequently, for a range of values of qz , when these two modes are excited, they transport
energy in opposite directions. The �+ mode transports energy in the direction opposite to the
phase velocity. This phenomenon occurs over a very narrow range of frequency and only for
one of the two optic-like modes. The existence of a negative group velocity depends not only
on the radius of the nanotube and the electron effective mass, but also on the ratio of α/R to
the Fermi energy which determines the number of occupied subbands. The magnitude of the
negative group velocity is controlled by changing α/(REF). This part of the plasmon spectrum
is not Landau damped by the SPE. Recently, Kushwaha and Ulloa [8] also reported on the effect
which the Rashba SOI has on the group velocity of plasmon excitations in two dimensions. (For

7
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Figure 3. Three-dimensional plot of the form factor M++(kz, qz) ≡ M++(kz, l; kz − qz , l − L)

as a function of kz and qz for l, L = 0. The radius of the nanotube is R = 11.0 Å and the Rashba
parameter is αR = 10−4 meV Å.

a list of references on the subject of negative group velocity, see, for example, the papers by
Woodley and Mojahedi [33] and McDonald [34].) Physically, this means that there is a group
delay for this collective mode over a range of wavevectors qz .

We would like to mention that we have carried out calculations for the plasma excitation
spectrum for a different set of values of αR, the nanotube radius R as well as the electron
density, i.e. the Fermi energy EF. The details of the excitation spectrum at T = 0 K are
determined by the subbands below the Fermi energy. In figure 2, the only subbands lying below
EF are E−(kz, l = 0), E+(kz, l = 0) = E−(kz, l = 1) and E+(kz, l = 1) = E−(kz, l = 2).
(We note that E+(kz, l) = E−(kz, l + 1) is satisfied.) When we used a larger value of
αR, the energy subbands above EF may also be split by the SOI. However, this is not the
case for αR = 10−4 meV Å. Thus larger αR may lead to differences in the particle–hole
regions. As a matter of fact, the lowest particle–hole excitation region in figure 2 corresponds to
transitions within the E−(kz, l = 0) subband. By plotting the energy eigenvalues as functions
of wavevector, one is able to identify the branches of particle–hole excitations noting that since
L = 0, we must have l ′ = l for the two subbands. However, not all transitions between
subbands are allowed due to the presence of the form factor Mλλ′ in the response function.
This is substantiated by the results obtained for the SPE region in figure 2 where there are gaps
within the SPE region. Thus to understand the role played by the form factor, we plotted M++
as a function of kz and qz for L = 0 in figure 3. In essence, the physical significance of the form
factor in figure 3 is to serve as a selection rule for the allowed single-particle transitions. This is
governed by the wavefunction overlap in equation (13). From figure 3, we see that near qz = 0,
the form factor rapidly decreases to zero as kz increases. This means that the SOI may not
allow some single-particle excitations to contribute. This is consistent with the results obtained
for the plasma excitation spectrum in the presence of SOI in [32], where it was found that the
effect of the form factor entering the response function for a quantum wire was to disallow
some of the transitions between subbands. The zeros of the denominator in the response
function χL(qz, ω) give the energies of the single-particle transitions. However, because of the
presence of the form factor in the denominator, similar to that appearing in equation (12), some
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single-particle transitions have zero weight due to the lack of overlap between the
wavefunctions for those two states involved. Tavares [35] did not include the form factor in
discussing possible single-particle and collective plasmon excitations for quantum wires with
SOI.

4. Concluding remarks

In summary, we have shown that although the SOI is not as large as it is for narrow-gap 2D
semiconductor systems, most notably InAs, it gives rise to some interesting effects on the
collective plasmon excitations on a nanotube. This includes the fact that not all single-particle
transitions between subbands contribute to the collective excitations, this being determined by
the degree of overlap between the eigenfunctions. The L = 0 plasmon excitation spectrum
consists of an acoustic-like plasmon branch which is also obtained in the absence of SOI [27].
In addition, there are optic-like plasmon modes arising from inter-SO subband transitions.
These are shown in figure 2, with one of the modes possessing negative group velocity in
the long-wavelength limit. The acoustic-like plasmon mode splits off from the single-particle
excitation region and lies above it. The optic-like plasmon modes (�±) split off from the inter-
SO single-particle transition spectrum. Calculations may also be carried out for L = 1 subband
transitions to yield the plasmon spectrum with SOI. Spectroscopic experiments using electron
energy loss [36, 37] and Raman scattering would be useful tools for examining the results
presented here.
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[26] Häusler W 2001 Phys. Rev. B 63 121310
[27] Lin M F and Shung K W-K 1993 Phys. Rev. B 47 6617
[28] Talyanskii V I, Novikov D S, Simons B D and Levitov L S 2001 Phys. Rev. Lett. 87 276802
[29] Kim P, Odom T W, Huang J-L and Lieber C M 1999 Phys. Rev. Lett. 82 1225
[30] Gumbs G, Balassis A and Fekete P 2006 Phys. Rev. B 73 075411
[31] Gumbs G and Balassis A 2005 Phys. Rev. B 71 235410
[32] Gumbs G 2004 Phys. Rev. B 70 235314
[33] Woodley J F and Mojahedi M 2004 Phys. Rev. E 70 046603
[34] McDonald K T 2001 Am. J. Phys. 69 607
[35] Tavares M R S 2005 Phys. Rev. B 72 207302
[36] Echenique P M, Flores F and Ritchie R H 1990 Solid State Physics: Advances in Research and Applications

vol 43, ed H Ehrenreich and D Turnbull (New York: Academic) p 230
[37] Horing N J M, Tso H C and Gumbs G 1987 Phys. Rev. B 36 1588

10

http://dx.doi.org/10.1103/PhysRevB.65.165217
http://dx.doi.org/10.1063/1.1800276
http://dx.doi.org/10.1007/s003390201415
http://dx.doi.org/10.1038/417156a
http://dx.doi.org/10.1063/1.111144
http://dx.doi.org/10.1103/PhysRevB.59.5090
http://dx.doi.org/10.1103/PhysRevB.60.4826
http://dx.doi.org/10.1103/PhysRevB.72.195319
http://dx.doi.org/10.1103/PhysRevB.63.121310
http://dx.doi.org/10.1103/PhysRevB.47.6617
http://dx.doi.org/10.1103/PhysRevLett.87.276802
http://dx.doi.org/10.1103/PhysRevLett.82.1225
http://dx.doi.org/10.1103/PhysRevB.73.075411
http://dx.doi.org/10.1103/PhysRevB.71.235410
http://dx.doi.org/10.1103/PhysRevB.70.235314
http://dx.doi.org/10.1103/PhysRevE.70.046603
http://dx.doi.org/10.1119/1.1331304
http://dx.doi.org/10.1103/PhysRevB.72.207302
http://dx.doi.org/10.1103/PhysRevB.36.1588

	1. Introduction
	2. The model for the spin--orbit interaction
	3. Numerical results for plasma excitations
	4. Concluding remarks
	Acknowledgments
	References

